The CNDO/S-CI Calculations of the Singlet $n\pi^*$ and $\pi\pi^*$ Levels of Quinones

Akira Kuboyama,* Yoshikuni Kozima,† and Junzo Maeda National Chemical Laboratory for Industry, Tsukuba Research Center, Yatabe, Ibaraki 305 † The Tokyo Metropolitan Industrial Technology Center, Kita-ku, Tokyo 115 (Received March 6, 1982)

Synopsis. The calculations proved to reproduce well the observed S_1 $n\pi^*$ levels of quinones, the numbers of the singly excited configurations contained in CI being twice those of the basis AO's. The calculations taking 0.500 as the κ value reproduce well the observed singlet $\pi\pi^*$ levels also. The unknown S_1 $n\pi^*$ levels of some quinones were predicted on the basis of the calculated results.

As for the CNDO/S-CI¹⁾ calculations of the singlet electronic-energy levels of quinones, only a few works2) on p-quinones have been reported. In this work, the lowest-energy singlet $n_{\pm}\pi^{*3}$ levels of principal o- and p-quinones have been studied with the aid of the CNDO/S-CI calculations. In the calculations, two κ values,⁴⁾ 0.585 (the formal one) and 0.500, were used. The 0.500 value was chosen to reproduce the observed energy difference between the $n_{\pm}\pi^*$ levels of p-benzoquinone, as will be shown later. In this work, the calculations using the two κ values are called as Cals. A and B respectively. The geometries of the quinones used in the calculations were the same as those used in the previous works,5) except for that of o-benzoquinone, where the C-H bond length was taken as 1.084 Å. In o-benzoquinone⁶⁾ and acenaphthenequinone,7) those values determined by X-ray-crystal analysis were used. Those of 2,6-naphthoquinone and diphenoquinone, and that of 5,14:7,12-pentacenediquinone, were determined on the basis of those of p-benzoquinone and 9,10-anthraquinone respectively.

In Fig. 1, n in the abscissa denotes the ratio of the number of the lowest singly excited configurations in-

cluded in the calculations (Cal. A) to that of the basis AO's in the MO's. As may be seen in Fig. 1, in p-benzoquinone the lowest $n_+\pi^*$ levels is higher than the lowest $n_-\pi^*$ level, and the energy separation (ΔE) between them is of the order of 0.1 eV, while in o-benzoquinone the $n_-\pi^*$ level is higher than the $n_+\pi^*$ level and the ΔE is of the order of 1 eV, as in α -diketones.⁸⁾ In both quinones, the $n_\pm\pi^*$ levels become lower with the increase in n, but, broadly speaking,

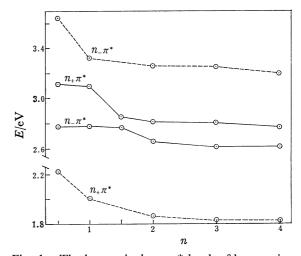


Fig. 1. The lowest singlet $n_{\pm}\pi^*$ levels of benzoquinones obtained by Cal. A. As for n in the abscissa, see Text.

---: p-Benzoquinone, ---: o-benzoquinone.

Table 1. Calculated singlet $n\pi^*$ levels of quinones

	Cal. A			Cal. B		Obsd ⁹⁾
	S_1		$\Delta E^{ m a)}$	$\widetilde{S_1}$	$\Delta E^{ m a)}$	$\frac{E}{\text{eV}}$
	Symmetry	$\frac{E}{\text{eV}}$	eV	$\frac{E}{{ m eV}}$	eV	ev
(1) p-Quinones						
p-Benzoquinone	$\mathrm{B_{1g}}$	2.659	0.153	2.582	0.023	2.48
1,4-Naphthoquinone	$\mathbf{B_1}$	2.749	0.082	2.601	0.008	2.68
9,10-Anthraquinone	$\mathrm{B}_{1\mathbf{g}}$	2.918	0.199	2.742	0.140	2.92
2,6-Naphthoquinone	A_{u}	2.826	0.029	2.674	0.035	
Diphenoquinone	$\mathrm{B_{1g}}$	2.863	0.049	2.766	0.015	
5,14:7,12-Pentacenediquinone	$\mathbf{B_{3u}}$	3.015	0.102b)	2.926	0.049^{b}	
(2) o-Quinones						
o-Benzoquinone	$\mathbf{B_1}$	1.866	1.393	1.878	1.069	1.91c)
1,2-Naphthoquinone	(B_1)	2.183	1.162	2.130	0.898	2.19
9,10-Phenanthrenequinone	$\mathbf{B_1}$	2.408	1.139	2.308	0.896	2.38
Biphenylene-2,3-dione	$\mathbf{B_1}$	2.357	1.173	2.229	0.951	2.25
Acenaphthenequinone	$\mathbf{B_1}$	2.567	0.928	2.471	0.773	2.42

a) The S_1 levels in p- and o-quinones are the $n_-\pi^*$ and $n_+\pi^*$ levels respectively. b) The energy difference between the S_1 and S_2 $n\pi^*$ levels. c) The estimated value.

settle at the point (n=2). Similar results were obtained in other o- and p-quinones. Results similar to the above were also obtained in Cal. B. Therefore, only the calculated values in the (n=2) case are used below.

In Table 1, the S₁-S₀ transitions are all found to be allowed transitions (out-of-plane) except for those of the three D_{2h}-type p-quinones, such as p-benzoquinone. It is also found that the S₁ level of each quinone is a little higher in Cal. A than in Cal. B, except for that of o-benzoquinone, and that in both Cals. A and B it is generally in good agreement with the observed one. The observed values are those of the longestwavelength peaks or shoulders⁹⁾ of the S-S $n\pi^*$ absorption spectra in saturated hydrocarbon solutions.

As for ΔE , in Table 1 it is smaller in Cal. B than in Cal. A in each quinone except for 2,6-naphthoquinone. In p-benzoquinone, the observed values (0.032^{10}) — 0.0004^{11}) eV (crystal) and 0.007 eV(gas)¹²⁾ are close to that in Cal. B. As the observed energy separations between the triplet $n_{\pm}\pi^*$ levels of 9,10anthraquinone¹³⁾ are not far from those of p-benzoquinone, the ΔE of 9,10-anthraquinone may be expected to be not far from that of p-benzoquinone. It is noticeable that the ΔE of 9,10-anthraquinone in Cal. B is considerably larger than that of p-benzoquinone. It is, however, uncertain at this stage whether or not this difference is significant.¹⁴⁾ In consideration of the large ΔE values of the o-quinones in Table 1, the S-S $n\pi^*$ absorption spectra of o-quinones may be concluded to consist of the $n_+\pi^*$ absorption spectra alone, as in α-diketones.8)

Table 2. Calculated low-energy singlet $\pi\pi^*$ LEVELS OF QUINONES

	Cal.	A	Cal. B	Obsd ⁵⁾				
	Sym- metry	$\frac{E}{\text{eV}}$	$\frac{E}{\mathrm{eV}}$	$\frac{E}{\text{eV}}$				
p-Benzoquinone	B _{3g} B _{1u}	4.909 5.767	4.394 5.225	4.5 5.2				
1,4-Naphthoquinone	$\begin{matrix} A_1 \\ B_2 \end{matrix}$	4.376 4.624	$\left. \begin{array}{c} 3.804 \\ 4.116 \end{array} \right\}$	3.8				
	${\rm A^{}_1}$	5.472 5.739	4.866 5.199	5.1				
9,10-Anthraquinone ^{a)}	B_{2u}	4.413	3.828	3.9				
	$egin{aligned} \mathbf{B_{1u}} \\ \mathbf{B_{2u}} \end{aligned}$	5.330 5.571	4.803 4.959	$\begin{array}{c} 4.6 \\ 5.0 \end{array}$				
o-Benzoquinone	$\mathbf{B_2}$	3.799	3.440	3.5				
1,2-Naphthoquinone		3.969 4.367 5.258	3.545 3.836 4.922	3.3 3.7 5.0				
9,10-Phenanthrene- quinone	$egin{array}{c} B_2 \\ A_1 \\ B_2 \\ B_2 \\ A_1 \end{array}$	3.917 4.377 4.477 5.197 5.458	3.475 3.799 3.949 4.681 4.887	3.1 3.9 3.7 4.8				

The forbidden levels have been omitted.

The low-energy $\pi\pi^*$ levels of the principal o- and p-quinones⁵⁾ obtained by Cal. B are found to be in good agreement with the observed ones in saturated hydrocarbon solutions, as may be seen in Table 2. The $n\pi^*$ S–S absorption spectra of 2,6-naphthoquinone and diphenoquinone have never been reported. In these quinones, as the lowest-singlet $\pi\pi^*$ levels are higher by 0.92 and 0.50 eV than the S_1 $n_-\pi^*$ levels respectively in Cal. B, the S₁ state may be predicted to be the $n_{-}\pi^{*}$ state. In addition, the S_{1} - S_{4} states of 5,14:7,12-pentacenediquinone are all the $n\pi^*$ states (the B_{3u}, B_{1g}, A_u, and B_{3g} states respectively) in both Cals. A and B, where the ΔE 's between S₁ and S₄ levels obtained by Cals. A and B are 0.320 and 0.195 eV respectively.

References

- 1) R. L. Ellis, G. Kuehnlenz, and H. H. Jaffe, Theoret. Chim. Acta, 26, 131 (1972); J. D. Bene and H. H. Jaffe, J. Chem. Phys., 48, 1807 (1968).
- 2) P. E. Stevenson, J. Chem. Phys., 76, 2424 (1972); M. E. Merienne-Lafore and H. P. Trommsdorf, ibid., 64, 3791 (1976); G. Olbrich, O. E. Polansky, and M. Zander, Ber. Bunzenges. Phys. Chem., 81, 692 (1977).
- 3) In $n_{\pm}\pi^*$, n_{\pm} denote the symmetric and anti-symmetric linear combinations of the two oxygen lone-pair orbitals, n_1 and n_2 , of quinones respectively, and π^* , the lowestenergy π^* orbital. In quinones, this π^* orbital usually contains an anti-symmetric linear combination of the two carbonyl parts.
- 4) In the CNDO/S method, 1) the empirical factor, κ , is introduced to distinguish the value of the resonance integral (β) of the π bond from that of the σ bond.
- 5) A. Kuboyama, S. Matsuzaki, M. Takagi, and H. Arano, Bull. Chem. Soc. Jpn., 47, 1604 (1974); A. Kuboyama, F. Kobayashi, and S. Morokuma, ibid., 48, 2145 (1975); A. Kuboyama and H. Arano, ibid., 49, 1401 (1976); A. Kuboyama, ibid., 54, 873 (1981); Chem. Phys. Lett., 41, 544 (1976).
- 6) A. L. MacDonald and J. Trotter, J. Chem. Soc., Perkin
- Trans. 2, 1973, 476.
 7) T. C. W. Mak and J. Trotter, Acta Crystallogr., 16, 811 (1963).
- 8) J. F. Arnett, G. Newkome, W. L. Mattice, and S. P. McGlynn, J. Am. Chem. Soc., 96, 4385 (1974).
- 9) It is thought that these are the 0-0 peaks in the quinones except for the D2h-type p-quinones, and that in the latters these are not far from the 0-0 peaks.
- 10) H. P. Trommsdorf, Chem. Phys. Lett., 10, 176 (1971). 11) T. M. Dunn and A. H. Francis, J. Mol. Spectrosc., **50**, 14 (1974).
- 12) The ${}^{1}B_{1g}$ $n_{-}\pi^{*}$ level is higher than the ${}^{1}A_{u}$ $n_{+}\pi^{*}$ level (G. T. Horst and J. Kommandeur, Chem. Phys., 44, 287 (1979); J. Goodman and L. E. Brus, J. Chem. Phys., 69, 1604 (1978)).
- 13) K. E. Drabe, H. Veenvliet, and D. A. Wiersma, Chem. Phys. Lett., 35, 469 (1975); T. N. Bolotnikova, T. M. Naumova and V. I. Savchenkov, Opt. Spectrosc., 47, 379 (1979); N. S. Strokach and D. N. Shigorin, ibid., 43, 34 (1977); Ref. 5 in the report (J. P. Galaup, J. Megel, and H. P. Trommsdorff, J. Chem. Phys., 69, 1030 (1978)); S. Y. Matsuzaki and A. Kuboyama, Bull. Chem. Soc. Jpn., 51, 2264 (1978).
- 14) E. Kanezaki, N. Nishi, and M. Kinoshita, Bull. Chem. Soc. Jpn., 52, 2836 (1979).